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Executive Summary 
 

This study observes and analyzes response data from a California Polytechnic State 

University San Luis Obispo campus-wide transportation survey conducted in the spring of 2022. 

In some instances (such as observing shifts in transportation mode usage and comparing 

differences in VMT, vehicle-miles traveled, and GHG, greenhouse gas, emissions), this study 

compares data from 2015 and/or 2018 with the data obtained from the 2022 survey. Additionally, 

this study seeks to document the methodology behind and obtain data regarding VMT and GHG 

emissions from survey response data. In calculating VMT and GHG emissions, external sources 

such as GGMAP were used for programming, and EMFAC and GWP were consulted in obtaining 

factors necessary for the calculation. Finally, this study also explored the methodology behind 

collecting traffic data at five road segments leading towards/away from campus and displays the 

resulting data. 

Due to the COVID-19 pandemic, it is thought that mode usage shifted from shared modes 

such as buses and carpooling to more individual modes such as bicycling and driving alone. 

However, responses from the 2022 data shows that this is not necessarily the case, as only 11% of 

respondents indicated that they changed travel modes due to the pandemic. Additionally, overall, 

the number of individuals driving alone reduced, while the number of individuals bicycling, 

walking, and riding the bus (for students) increased between the years of 2018 and 2022.  

Calculations of VMT for this 2022 survey display that the total estimated weighted yearly 

VMT is 46.8 million. The largest contribution to the VMT was from those who traveled by gas-

powered cars. This is unsurprising, as driving alone and carpooling/vanpooling were reported to 

be used by those with the largest commute distances per the 2022 survey. Qualitative results were 

similar from the previous 2018 survey, although the numerical data differed (for example, the 

average commute distances increased between the 2018 and 2022 surveys). Significantly far 

behind in VMT contribution were electric vehicles (EVs) followed by buses and motorcycles, per 

the 2022 survey results. 

.  



 

 

 

 

 

  

Chapter I: Survey Design 
Participant Outreach 
 

To bring awareness to the campus community regarding this survey, the team worked 

with university communications to send the survey link to all campus community members. Both 

an initial email introducing the survey and a reminder email were sent to the campus community. 

Figure # below displays the reminder email; this email is similar to the initial survey email. 

 

Figure 1.1 Survey reminder email. 

 

Based on these outreach efforts, the survey team received 1,791 responses. The total 

campus community member count was 24,969 at the time of the survey, leading to a response rate 

of 11%. This response rate is similar to that of the most recent two transportation surveys. Table 



 

 

 

 

 

  

1.1 below displays the campus member counts and survey response trends for the four most recent 

transportation surveys. 
 

Survey year Survey 

administration 

dates 

Reference week Total Campus 

population 

Total Survey 

Respondents 

Response Rate 

2015 June 9 - June 

15 

NA 22,898 4,272 19% 

2018 May 29 - June 

8 

May 20 - May 

26 

25,170 2,625 10% 

2019 January 22 - 

February 1 

Most recent 7 

days 

24,969 2,809 11% 

2022 May 6 - May 

27 

Most recent 14 

days 

24,950 2,769 11% 

Table 1.1 Survey timing and response rates. 

 

The overall response rate can be further broken down into rates by respondent category; 

these rates are displayed in Table 1.2 below. There is a discrepancy in the sum of the number of 

responses in Table 1.2 and the total responses reported in above Table 1.1, as 113 respondent 

categories were marked as blank. As can be seen, the response rate was highest amongst full-

time staff members, and lowest amongst part-time staff and undergraduates who are second years 

and older.  

 

Respondent Category Campus Population Number of Responses Response Rate 

Faculty, Full-time 892 253 28% 

Faculty, Part-time 518 65 13% 

Staff, Full-time 1,292 574 44% 

Staff, Part-time 226 16 7.1% 

Undergraduate, 1st 

Year 

3,866 402 10% 

Undergraduate, 2nd 

Year and Above 

17,227 1209 7.0% 

Graduate 929 137 15% 

Table 1.2. Response rates per respondent category. 

 

 

 



 

 

 

 

 

  

Modifications to 2022 Survey 
 

There were a number of modifications made to the survey sent out in 2022 from the survey 

in 2018. This involved adding questions to the survey and altering the wording of particular 

questions. No questions were removed fully from the 2018 survey when composing the 2022 

survey.  

Questions Added to 2022 Survey  
 

The following are questions that did not exist in the 2018 version but were added to the 

2022 survey. The main goal of these added questions was to collect more detailed and 

comprehensive data regarding the survey respondents. A few questions were also added to collect 

information on how the COVID-19 pandemic (which was not present at the time of the 2018 

survey) may have impacted travel patterns of survey respondents. For simplicity, the descriptions 

and reasoning behind each question addition are provided within the Figure label. 

 

Figure 1.2. First question added to 2022 survey, used to further organize the student 

respondents and study patterns of commuting based on year in the university. 

 

 

Figure 1.3. Second question added to 2022 survey, used to indicate more precisely where 

respondents are commuting to campus from and to be able to generate a heatmap (see “Results and 

Discussion” within the VMT methodology section) of this data. 

 



 

 

 

 

 

  

Figure 1.4. Third question added to 2022 survey, used to get an idea of which respondents 

are actively traveling to/from campus or are temporarily prevented from doing so due to the 

COVID-19 pandemic. 

Figure 1.5. Fourth and fifth questions added to 2022 survey, used to generate data 

specific to the COVID-19 pandemic.  



 

 

 

 

 

  

Figure 1.6. Seventh, eighth, and ninth questions added to 2022 survey, to include information 

from respondents regarding EV ownership and habits. 

 

Figure 1.7. Tenth question added to the 2022 survey, and this textbox was originally part 

of another question in the 2018 survey but was presented as an individual question in the 2022 

version. 

 

 



 

 

 

 

 

  

 

Figure 1.8. Eleventh question added to the 2022 survey, to study in more detail the 

commuting patterns of respondents throughout the week. 

 

In addition to the above questions, the 2022 survey includes a series of self-identifying 

questions from the following list (all of which are optional for respondents): 

● What gender do you most strongly identify with? 

● Which racial/ethnic category do you most strongly identify with? 

● In what year were you born? 

● Not including yourself or roommates, how many people in each of the following 

age categories live in your household? 

● What is your total household annual income? 

 

Questions Altered between 2018 and 2022 Surveys 
 

The following are a series of questions that were altered between the 2018 and 2022 

surveys. Sequentially, within the following sets of figures, the 2018 version appears first and the 

2022 version appears second. 

 



 

 

 

 

 

  

Figures 1.9 and 1.10. The first set of altered questions, shortened in the 2022 survey to 

make it more user-friendly for respondents and to obtain a more concise set of response data from 

this question. 

 

 

Figure 1.11 and 1.12. Second set of altered questions, in which “Bicycling”, 

“Vanpooling”, and “Other” were added as responses, “Skateboarding/Longboarding” was 

removed, and “Public transportation” was replaced with “Bus”.  



 

 

 

 

 

  

 
Figure 1.13 and 1.14. Third set of altered questions, in which “Bicycling”, “Vanpooling”, and 

“Other” were added as responses, “Skateboarding/Longboarding” was removed, and “Public 

transportation” was replaced with “Bus”.  

 

 

 

 



 

 

 

 

 

  

 

Figure 1.15 and 1.16. Fourth set of altered questions, in which the options of “Safety” and 

“The COVID-19 Pandemic” were added and the scale of importance was altered to be clearer and 

more comprehensive for survey respondents.  

 

 

 

 



 

 

 

 

 

  

 

Figure 1.17 and 1.18. Fifth set of altered questions, in which the options of “Safety”, “The COVID-

19 Pandemic”, and “Weather” were added to provide more comprehensive options for survey respondents 

to select. 

 

 



 

 

 

 

 

  

Figure 1.19 and 1.20. Sixth set of altered questions, in which the response options were re-

ordered and the additional option of “Neutral” was added in order to provide a more comprehensive scale 

for survey respondents. 

Figure 1.21 and 1.22. Seventh set of altered questions, in which additional, more detailed 

response options were provided to collect more comprehensive data. 

 

 

Figure 1.23 and 1.24. Eighth set of altered questions, in which the commuter pass options had a 

specific number of cars and motorcycle, and evening permit options were added. The “None” options from 

the 2018 survey were removed, because, in the 2022 survey, the question prior is designed to have 

respondents skip this question if they do not have a permit. 



 

 

 

 

 

  

 

 

Figure 1.25 and 1./26. Ninth set of altered questions, in which the response options of “I don’t 

have a vehicle” and “N/A (I did acquire a current parking permit” were removed because previous questions 

would have redirected a respondent who didn’t have a vehicle or had a permit away from this question. 



 

 

 

 

 

  

 

Figure 1.27 and 1.28. Tenth set of altered questions, in which the “Carpool” and 

“Vanpool” options were combined into one for simplicity. Additionally, the scaling values were 

modified to be more descriptive and comprehensive for survey responses. Finally, the “Additional 

comments?” textbox was removed for this question, and made as its own free-standing question in 

the 2022 survey. 

 

 

 



 

 

 

 

 

  

 

Figure 1.29 and 1.30. Eleventh set of altered questions, in which “bikeshare” was generalized to 

“shared micro-mobility” to encompass more modes such as e-scooters. Additional response options of “I 

already own a powered micro-mobility device”, “I am interested but unsure of safety”, and “I am not 

interested” were included to gauge how many respondents would not participate in a shared mobility 

program. 

 

 

 

 



 

 

 

 

 

  

 

Figures 1.31, 1.32, 1.33, and 1.34. Twelfth set of altered questions, with the first two being from 

2018 and the second two being from 2022. Response options relevant to the COVID-19 pandemic were 

added to both questions to account for the potential impact of this factor on not using Zipcar. 

 

 

 



 

 

 

 

 

  

 

Figure 1.35 and 1.36. Thirteenth set of altered questions, in which an option regarding COVID-19 

was added in order to account for its potential impact on respondents choosing not to carpool. 
 



 

 

 

 

 

  

 

Figure 1.37 and 1.38. Fourteenth set of altered questions, in which “iRideshare” was 

generalized to “rideshare” programs to include the programs of “Guaranteed Ride Home” and 

“Carpool parking permits”. 

 

 

Figure 1.39 and 1.40. Fifteenth set of altered questions, in which the response of “A 

limited number of one-day parking passes” was removed and the responses of “Would not consider 

carpooling due to COVID-19 pandemic” and “Other/Write In” were added. This was to observe 

any potential impact of COVID on carpooling and provide a space for respondents to describe 

their unique circumstance if applicable. 
 



 

 

 

 

 

  

 

Figure 1.41 and 1.42. Sixteenth set of altered questions, in which the responses of “Better 

COVID-19 safety measures”, “I have no interest in riding the bus for reasons related to the COVID-19 

pandemic”, and “Other/Write In” were added. This was to account for any potential impact of COVID-19 

on openness to travel via transit, as well as to provide respondents with an opportunity to type in a unique 

response if applicable. 

 

 

 

 



 

 

 

 

 

  

 



 

 

 

 

 

  

Figure 1.43 and 1.44. Seventeenth set of altered questions, in which the response option “Safer 

bike routes on campus” was removed. 

 



 

 

 

 

 

  

Survey Pilot 
 

Before releasing the travel survey to the entire campus community, the team conducted 

pilot surveys with two individuals from each of the following categories: staff, faculty, and student. 

Some respondents tested the version of the report as having a parking permit, and some responded 

as not having a permit, depending on their individual circumstances. This was to test as many 

question pathways in the survey as possible.  

 

The survey team and respondents observed aspects such as the order of the questions, the 

logical flow of the questions, and made sure that all the hyperlinks were operational and directed 

survey respondents to the appropriate web address. The survey team also recorded how long it 

took respondents to take the survey, in order to give an accurate time, estimate of how long the 

survey would take for the general campus community. 

 

In addition to taking the survey, the test respondent provided feedback while participating 

in and after submitting the survey. Table 1.3 below displays a few key points that test respondents 

brought up while taking the survey and how this feedback was applied to the final survey. 

 

Feedback Application 

The more user-friendly method of determining 

from where people are commuting to/from campus 

is via typing in cross-streets, as opposed to clicking 

the location on a heatmap. 

The survey team was testing the heatmap as an 

option to replace the typing in of cross-streets but 

decided to keep the cross-street fill-in method 

based on user preference. 

It should be clarified whether a “trip” to and from 

campus should be counted as 1 trip in the survey, 

or two trips. 

The question “In the past 7 days, check which, if 

any of the following modes you used to travel to 

and from home and campus?” was changed to a 

matrix of checkboxes for days those individuals 

commuted to/from campus and what mode they 

used, as opposed to typing in the number of trips to 

and from campus. 

It should be clarified whether owning or leasing an 

EV includes owning a hybrid vehicle. 

The survey team adjusted the wording of questions 

involving reference to owning or using an EV such 

that it was clear to respondents that hybrid vehicles 

are included under the category of EV. 

Adjust the “Try Alternatives?” ranking question of 

how willing one would be to try an alternative 

mode, such that the scale options are more 

consistent and comprehensive. 

The survey team adjusted the wording of the 

question “How willing would you be to try each of 

the following alternative forms of transportation to 

travel to and from campus?” such that a consistent 

scale was used. 

Table 1.3. Key feedback provided by test survey respondents and how the survey team applied them to 

the final draft. 

 

The survey team received feedback on grammar and wording improvements of questions, which 

we considered while reviewing and editing the survey. Test respondents overall felt that the survey was 



 

 

 

 

 

  

user-friendly in its graphics and seemed to appreciate the logical order of the questions. Some test 

respondents decided to take the test survey on their cell phone, and some did so on their laptop – both 

versions were well-received as user-friendly. 
  



 

 

 

 

 

  

Chapter II: Changes in Campus Travel Transportation 

Mode 

Two overarching themes will be explored in this subsection: how the preferred modes of 

transportation have changed between the 2018 and 2022 surveys, and what factors within 2022 

only impact respondents’ transportation mode of choice. 

2018 vs. 2022 Comparison 

When comparing preferred transportation modes between 2018 and 2022, the survey 

team’s analysis observed the percentage of students and faculty/staff that used each mode of 

transportation for each respective year. These percentages are displayed in Table 2.1 below. 

Among students and faculty/staff for both years, “Diving Alone” was consistently the most 

preferred mode of transportation, while the modes of “Motorcycling/Motorized Scooter”, “Ride-

Hailing app (Uber/Lyft)”, and “Other” were least popular. Overall, for both years, students also 

largely preferred “Walking”, while faculty/staff did not have a mode other than “Driving Alone” 

that came close in popularity. This is likely due to faculty/staff living farther away from campus 

than students, as is explored with the average one-way commute distances in Table 2.1 within the 

results section of “Estimating Vehicle Miles Traveled”. 

Table 2.1. Mode use comparison between students and faculty/staff, and between 2018 and 2022. 

As can be seen in comparing the 2018 and 2022 percentages in above Table 2.1, the number of 

individuals driving alone reduced, while the number of individuals bicycling, walking, and riding the bus 

(for students) increased. This indicates that individuals are selecting more eco-friendly commute modes in 

2022. 

Transportation Mode Choice in 2022 

When exploring the factors that impact transportation mode choice within the year 2022, it is 

important to consider and provide a variety of options for individuals. Drawing from factors listed in the 

2018 survey such as availability, cost, and desire for exercise, the 2022 survey team also added the factors 

of safety and the COVID-19 pandemic. The survey team also explored how willing respondents were to try 

particular modes of transportation. All of the following tables include a “blank” row and column, which 

represents the respondents that did not answer the question. 



 

 

 

 

 

  

Table 2.2 below displays what factors led to respondents selecting certain transportation modes. 

The factor of convenience/time is what led to a large number of individuals selecting to drive alone, walk, 

or bicycle. This is reasonable, as these three modes of transportation are easily accessible to their users and 

do not depend on another individuals’ participation (as opposed to a mode such as the bus, in which a driver 

is required). Similarly, the factor of availability leads to many individuals selecting to drive along, due to 

this mode being accessible. A promising trend is that those who bicycle are also considering environmental 

sustainability as the most important factor. 

Table 2.2. Factors of why respondents choose particular commute modes. 

The willingness of individuals to try commute modes unique from the ones they currently use, and 

that are more environmentally friendly, was also explored in this survey. This report will explore the two 

particular alternative commute modes of public transit and biking. The following two Tables 2.3 and 2.4 

show the willingness to try the alternative mode in comparison to what mode the respondents use most 

frequently to commute to campus. As Table 2.3 displays, more individuals are willing to try public transit 

than not; however, Table 2.4 displays that more people would rather not try biking as an alternative. The 

preference of trying public transit versus biking is likely due to bicycling requiring a perceived level of 

safety, bicycle ownership and access, and a level of physical ability and fitness. Riding the bus, on the other 

hand, does not require a level of fitness nor ownership of a vehicle, and it accommodates those who have 

disabilities more easily. 

Table 2.3. Willingness of individuals to try public transit based on their current most frequently 

used mode of transportation. 



 

 

 

 

 

  

Table 2.4. Willingness of individuals to try bicycling based on their current most frequently used mode of 

transportation. 
COVID-19 Pandemic 
 

One of the many factors that makes this 2022 survey unique from previous ones is the potential 

impact of the COVID-19 pandemic on the travel patterns of survey respondents. To explore the impact of 

COVID-19, some questions that were already existing were altered to include response options related to 

COVID-19, as described within the “Questions Altered between 2018 and 2022 Surveys” section. 

Additionally, the 2022 survey contains particular questions that targeted information regarding travel and 

COVID-19 as follows: 

 

● Has the COVID-19 pandemic had an effect on which mode you chose/choose? 

● If yes, how have your travel modes changed? 

 

In total, 191 off-campus respondents (or 11%) indicate that they switched modes due to the 

COVID-19 pandemic. A full breakdown of the responses as to how COVID-19 impacted respondents’ 

commute mode is displayed in Table 2.5 below. 

 

Respondent Category 

No, COVID-19 

does not affect 

my mode 

choice 

No, COVID-19 

has not affected 

my mode choice 

Yes, I have 

switched modes due 

to the COVID-19 

pandemic 

Blank/No 

Response 

 

Faculty, Full-time 2 202 29 3 

Faculty, Part-time 0 49 11 1 

Staff, Full-time 0 450 67 6 

Staff, Part-time 0 9 3 1 

Undergraduate, 1st Year 0 12 0 1 

Undergraduate, 2nd Year 

and Above 

1 727 66 35 

Graduate 0 96 15 5 

Table 2.5. Responses to the question “Has the COVID-19 pandemic had an effect on which mode you 

chose/choose? 

 



 

 

 

 

 

  

The results of how travel modes have changed are shown below in Figure 2.1, with the rows being 

what the respondent’s original transportation mode was and the columns being the mode that the respondent 

switched to due to COVID-19. There is a discrepancy in the total value of those who switched modes (sum 

of the “Yes” column in above Table 2.6), as some respondents selected switching within the same mode 

(ex: From Biking to Biking) and some left the question blank. As can be seen in Figure 2.1, a large number 

of individuals switched from commuting by Bus and Carpooling to Driving alone; this is reasonable, as 

there is concern that COVID can spread amongst individuals sharing a confined space.  

 

Figure 2.1. Responses for switching from one mode to another. 

 

Telecommuting 
 

A potential impact of the COVID-19 pandemic was telecommuting, in which students, faculty and 

staff had (and, in some cases still have) the opportunity to dial into classes remotely. From virtual planning 

meetings to virtual classes, telecommuting became the expected mode of instruction at the University 

during the height of the pandemic; now that restrictions have eased, many have returned to in-person 

instruction and meetings, and some have chosen to remain virtual. At the time of this survey, the pandemic 

restrictions had been significantly reduced, which is reflected in the low percentages of 4.38% for 

employees and 0.67% for students telecommuting as shown in Tables 2.6. 

 

Table 2.6. Percentages of employees and students using particular commute modes. 



 

 

 

 

 

  

Within the respondent category of employees, one can also observe the number of days 

they telecommute per week. As can be seen in the below Table 2.7, the majority of employees do 

not telecommute or telecommute for only one or two days out of the week. Also evident in the 

below table is that approximately 60% of employees do not telecommute in an average week.  

 

Table 2.7. Number of employees telecommuting for a certain number of days per week. “NA” 

refers to employee respondents who left this question blank. 
 

Electric Vehicles 
 

With more focus on reducing humans’ impact on the environment, the popularity of EVs 

has increased in more recent years. As Figure 2.2 shows, the nationwide sale of hybrid-electric, 

plug-in hybrid-electric, and electric vehicles combined has been steadily increasing since the year 

2000, and even approximately doubled between the most recent two years of 2020 and 2021 

(Hybrid-Electric, Plug-in Hybrid Electric, 2022). This shows that the popularity of purchasing and 

owning EVs is ever-increasing, with the potential to continue this upward trend in the near future.  

 

Figure 2.2. Sale of three types of EVs for the past twenty-one years in the United States. 

(Chart by U.S. Department of Energy, Energy Vehicle Technologies Office, Oak Ridge National 

Laboratory, Transportation Energy Data Book, Edition 40, table 6.2, available at 

https://tedb.ornl.gov/data/ as of Jun. 21, 2022.) 

 

https://tedb.ornl.gov/data/


 

 

 

 

 

  

  
 

Due to this upward trend in EV ownership nationwide, it is important for the campus to be 

prepared for an increase in EVs in the near future. This can partially be predicted by individuals 

indicating interest in bringing to campus and charging EVs. The 2022 survey asks a series of 

questions to explore the campus community’s interest in EVs as follows: 

 

● Do you have an electric vehicle (EV), including plug-in hybrid or battery electric that you 

currently use to commute to campus? 

● Do you intend to begin commuting to campus in an EV? 

● How often do you charge your electric vehicle on campus? 

 

Table 2.8 below displays how many individuals from each respondent category currently 

commute to campus via their EV. As can be seen, approximately 10% of those who responded to 

this question (or, 150 respondents) indicated that they currently commute via their EV.  

 

Respondent Category Yes No 

Faculty, Full-time 50 170 

Faculty, Part-time 9 45 

Staff, Full-time 55 433 

Staff, Part-time 4 6 

Undergraduate, 1st Year 0 7 



 

 

 

 

 

  

Undergraduate, 2nd Year and 

Above 

26 544 

Graduate 6 83 

Total 150 1288 

Table 2.8. Responses to “Do you have an electric vehicle (EV), including plug-in hybrid or 

battery electric, that you currently use to commute to campus?”. 

 

With EV ownership comes the unique responsibility of charging the vehicle for proper 

operation. According to the University website, there are currently 21 ChargePoint spaces to 

charge an EV (Electric Vehicles, n.d.). However, this website also indicates that there was a 

planned expansion of these spaces in 2022, so this number is likely larger than 21 at the time of 

the writing of this report (Electric Vehicles, n.d.). Table 2.9 displays the number of days per week 

that individuals within each respondent category charge their EV on campus. It is important to 

note that this question was only visible to those who indicated “Yes” to the previous survey 

question of “Do you have an electric vehicle (EV)...that you currently use to commute to campus?” 

 

Table 2.9. Responses to “How often do you charge your electric vehicle on campus?”. 

 

As Table 2.9 displays of those who commute via their EV, most individuals do not charge 

their EV on-campus; the next-greatest frequency of vehicle charging is 1-2 days per week, and the 

least popular charging frequency is 5 or more days per week. This could indicate that individuals 

cannot easily find an available space to charge their EV, or that individuals simply choose not to 

charge many days of the week. In order to properly form a conclusion, these individuals would 

need to address an additional question of “Why do you charge your EV fewer days of the week or 

never on campus?”. 

Respondent Category 
1-2 days per 

week 

3-4 days per 

week 

5+ days per 

week 
Never 

Faculty, Full-time 15 4 3 28 

Faculty, Part-time 5 1 0 3 

Staff, Full-time 10 4 4 37 

Staff, Part-time 0 0 1 3 

Undergraduate, 1st Year 0 0 0 0 

Undergraduate, 2nd Year 

and Above 

3 3 1 19 

Graduate 3 1 0 2 

Total 36 13 9 92 



 

 

 

 

 

  

 

Looking into the future of EV ownership, the 2022 survey sought to collect data on how 

many individuals intend to begin commuting to campus in an EV and in what time frame. The 

below Table # displays the response counts collected for this question. Naturally, this question was 

only visible to those who answered “No” to the question “Do you have an electric vehicle (EV), 

including plug-in hybrid or battery electric, that you currently use to commute to campus?”.   

 

As Table 2.10 below displays, the most respondents I indicated that they do not plan to or 

do not know if they will commute via an EV. This can be due to a variety of factors, such as limited 

EV charging spaces, insufficient infrastructure at home to charge an EV, or insufficient funds to 

purchase an EV and/or its at-home charging infrastructure. However, the table also displays a 

number of individuals who plan to commute via EV, with most stating that they plan to do so in 

the next 2-3 and 3-5 years. The total number of individuals who indicated that they have a plan to 

commute via EV in the future is 265. This indicates that the campus should expect an increased 

usage of EVs in the near future and consider expanding its charging capabilities. 

 

Respondent 

Category 

Yes, 

within 1 

year 

Yes, in 2-

3 years 

Yes, in 3-

5 years 

Yes, in 

5+ years 

No Do not know 

Faculty, Full-time 10 22 17 20 71 30 

Faculty, Part-time 1 9 6 4 18 7 

Staff, Full-time 22 47 41 31 190 102 

Staff, Part-time 0 1 0 0 2 3 

Undergraduate, 

1st Year 

0 2 0 0 3 2 

Undergraduate, 

2nd Year and 

Above 

11 7 3 5 440 77 

Graduate 3 0 3 0 64 13 

Total 47 88 70 60 788 234 

Table 2.10. Responses to “Do you intend to begin commuting to campus in an EV?”. 

  



 

 

 

 

 

  

Chapter III: Estimation of Vehicle Miles Traveled 
 

Vehicle miles traveled (VMT) refers to total miles traveled by motorized vehicle modes. 

This includes modes such as buses, cars, motorcycles, and alternative fueled vehicles. VMT does 

not include non-motorized modes such as walking and bicycling. Across the United States and in 

California the trend of VMT per year has generally been an upward increase (California VMT 

Data, n.d.). There are a variety of factors that influence the number of VMTs produced by a 

community. These range from factors such as the unemployment rate and median income of a 

community, to fuel prices and the number of licensed individuals (Hymel, 2014).   

 

In this chapter, the methodology used to calculate VMT from the survey response data will 

be described. Additionally, the results from these analyses will be presented and discussed. For 

the VMT calculation, origin/destination locations as reported by respondents and factors based on 

average occupancy of transportation modes were utilized.  

 

Methods and Data 
 

The following section explores the methodology used to determine VMT. It follows a set-

by-step sequence, summarized by section titles and described more thoroughly underneath each 

title. Additionally, select data is displayed via figures and tables to support the methodology. 

 

Determining Average Commute Distances 

 

Average commute trip distances for the travelers were determined using the self-reported 

cross street locations. We used the ‘Geocode’ function in the GGMAP library in programming 

language R to find the latitude and longitude of the cross street location. The input value for the 

cross street location included Street 1 Name, Street 2 Name, City, State, and Zip Code. The 

‘Geocode’ function finds the latitude and longitude of a location using the Google Geocoding API. 

To use Google's Geocoding API, we first enabled the API in the Google Cloud Platform Console. 

The cost of using the Geocoding API was 0.005 USD per each (5.00 USD per 1000) query.  

 

Next, distances from the geocoded locations were calculated from the Cal Poly campus. 

The following latitude and longitude location was used as the center of Cal Poly campus. 

 

35.302622, -120.662970 

 

Using the ‘mapdist’ function from the GGMAP library in R, we calculated the shortest 

driving distance between the geocoded address location to the aforementioned coordinate in Cal 

Poly campus.  

 

Furthermore, we estimated the trip distance for respondents that did not complete a cross-

street location in their survey. We used the answer to the following question to impute their trip 

distance. The imputed average trip distance values are included in the captions of Figures 3.1 - 3.4. 

 

 



 

 

 

 

 

  

Where do you live? 

 

A. On-campus, faculty or staff in campus housing (RAs should classify themselves as 

students) 

B. On-campus, student in resident student housing (RAs should classify themselves as 

students) 

C. Off-campus, within 1 mile of campus 

D. Off-campus, within 1 to 2.9 miles from campus 

E. Off-campus, within 3 to 9.9 miles from campus 

F. Off-campus, 10 or more miles from campus 

 

 

 
 

Figure 3.1. Self-reported distance for trips within 1 mile of campus (average = 1.36 miles for 

trips less than 5 miles) 

 

 



 

 

 

 

 

  

 

 

Figure 3.2. Self-reported distance for trips within 1 to 2.9 miles from campus (average = 2.13 

miles for trips less than 10 miles) 

 

 

 

 

Figure 3.3. Self-reported distance for trips within within 3 to 9.9  miles from campus (average = 

4.47 miles for trips less than 25 miles) 

 

 

 



 

 

 

 

 

  

 
 

Figure 3.4. Self-reported distance for trips 10 or more miles from campus (average = 22.43 

miles for trips less than 150 miles) 

 

Estimating Unweighted Weekly VMT 

 

Next, we determined the number of days per week that an individual respondent travels to 

and from campus. This was achieved through asking off-campus respondents to select which days 

they travel to/from campus. This value was used in subsequent steps of the VMT estimation.  

 

Another necessary component of this calculation was to determine the VMT factor based 

on the estimated occupancy of the mode type, such that the calculation accounts for modes such 

as bus and vanpool that carry more than one passenger. A summary of the VMT factors and the 

reasoning behind each factor is provided in Table 3.1. This table includes VMT factors for all 

motorized mode types, as all non-motorized modes (i.e. biking, walking) were assumed to have a 

VMT factor of zero.  



 

 

 

 

 

  

Table 3.1. VMT factors for motorized mode types and the reasonings behind these factors. 

 

Mode Assumed Number 

of Occupants (X)* 

VMT Factor 

(1/X) 

Reasoning 

Driving 

Alone 

1 1 Assumed that students are driving by 

themselves if they select “Car” as the 

mode instead of “Carpool” 

Motorcycle/

Motorized 

Scooter 

1 1 Motorcycles and motorized scooters are 

typically designed for and/or ridden by 

a single individual 

Dropped 

Off 

1 1 Assumed this value is 1, as there is a 

significant amount of variability in 

being “dropped off”. For example, the 

person could be just returning to their 

original destination, going to work after 

dropping off their child, etc. that would 

lead to multiple occupants or a single 

occupant at any given time. 

Uber/Lyft 1.35 0.741 The estimated occupancy is between 

1.2-1.5 persons according to Tirachini 

and Gomez-Lobo (2020), therefore the 

middle value of 1.35 was assumed. 

Bus 10.5 0.095 The document “Average Vehicle 

Occupancy Factors for Computing 

Travel Time Reliability Measures and 

Total Peak Hour Excessive Delay 

Metrics” was used to average bus 

occupancies amongst the reported cities 

in California (FHWA, 2018). The 

resulting average was 10.5 occupants. 

Carpool 2.25 0.444 The value of 2.25 persons was 

determined by a CalTrans HOV lane 

study (Caltrans, n.d.) 

Vanpool 10 0.100 San Luis Obispo Rideshare reports 

vanpools as having an estimated 

occupancy range between 5 and 15 

individuals. Therefore, the middle value 

of 10 occupants was assumed. (Vanpool 

- San Luis Obispo County, n.d.) 



 

 

 

 

 

  

VMT factors included in Table 3.1 were multiplied by the estimated distances from the 

Google maps calculations in accordance with the associated mode type, which were in turn 

multiplied by the number of days that the respondent reported traveling to/from campus. This value 

gave an estimate of the weekly VMT per survey respondent. Via a pivot-table in excel, the average 

number of days commuted and the average weekly VMT per person per respondent category (see 

Table 3.2 for clarification on what the respondent categories include) were determined. Then, the 

unweighted total weekly VMT was determined by multiplying this average weekly VMT per 

person within the respondent category by the actual off-campus population of the respondent 

category. This “actual off-campus population” refers to the number of individuals within the 

campus community subtracted by the number of on-campus residents within the category, and not 

only the count of those off-campus respondents to the survey, that fall within a particular 

respondent category. This data is as of Fall 2022 and was provided by the University and is 

presented alongside the number of survey respondents per respondent category in Table 3.2. 

 

Table 3.2. Number of survey respondents and number of university community members per 

respondent category. 

Respondent 

Category 

Number of Off-

Campus Survey 

Respondents 

Number of 

Total 

Individuals in 

the Campus 

Community 

Number of 

Total On-

Campus 

Individuals  

Number of 

Total Off-

Campus 

Individuals 

Faculty, Full-

time 

236 892 6 886 

Faculty, Part-

time 

61 518 0 518 

Staff, Full-time 523 1292 21 1271 

Staff, Part-time 13 226 0 226 

Undergraduate, 

1st Year 

13 3866 3703 163 

Undergraduate, 

2nd Year and 

Above 

829 17227 4709 12518 

Graduate 116 929 50 879 

Total 1791 24950 8489 16461 

  



 

 

 

 

 

  

Weighting 

 

To transform the unweighted total weekly VMT per respondent category into weighted VMT 

values, the weighting value of each response was determined. These values are unique to each 

respondent category and represent the portion of the category within the campus community that 

participated in the survey. The weighting process accounts for the fact that the relative amount of 

participation is different among varying categories and attempts to correct for this by the weighting 

factor (see Kalton and Flore-Cervantes, 2003, and Pew Research Center, 2018, for further 

information regarding weighting). A larger weighting factor value indicates a lower response rate.  

 

The weighting factors (WF) were determined by using the following Equation 3.1, whereby the 

values of Number of Off-Campus Survey Respondents and Total Off-Campus Population are 

derived from Table 3.3. To compare apples to apples, the survey team used the number of off-

campus survey respondents and off-campus population (as opposed to total survey respondents 

and total campus population). A summary of the resulting weighting factors for each category are 

provided in Table 3.3. 

 

𝑊𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑓𝑓 𝑐𝑎𝑚𝑝𝑢𝑠 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑜𝑓𝑓 𝑐𝑎𝑚𝑝𝑢𝑠 𝑠𝑢𝑟𝑣𝑒𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 
     (3.1) 

 

 

 

Table 3.3. Response weighting factors (WF) based on respondent category. 

Respondent Category Weighting Factor (WF) 

Faculty, Full-time 3.75 

Faculty, Part-time 8.49 

Staff, Full-time 2.43 

Staff, Part-time 17.4 

Undergraduate, 1st Year 12.5 

Undergraduate, 2nd Year 15.1 

Graduate 7.58 

 

  



 

 

 

 

 

  

Finding Total Weighted Yearly VMT 

 

The respective above weighting factors were then multiplied by the unweighted average 

weekly VMT values per respondent category to determine the weighted weekly VMT value per 

respondent. Then, to determine the weighted yearly VMT value per respondent category, each 

respondent group was assigned an assumed number of weeks per year that they traveled to/from 

campus. All faculty were assigned 40 weeks, all staff 46 weeks, and all students 38 weeks. The 

week value for students was determined according to how many weeks the University is in session; 

the value for faculty was determined by assuming a yearly faculty employment period is nine 

months; and the value for staff was determined by subtracting vacation and holiday time from total 

weeks in a year. The weighted yearly VMT per category value was calculated by multiplying the 

weighted weekly VMT value by the number of weeks the respondent category is expected to report 

to campus per year. Finally, the total weighted yearly VMT value was determined by summing 

together the weighted yearly VMTs for respondent categories. 

 

Results and Discussion 
 

Based on the cross-street locations that survey respondents entered, a heatmap was 

generated to observe patterns. This better visualizes the “hotspots” of where respondents were 

traveling to and from. Figure 3.5 shows the responses for all survey takers, while Figure 3.6 

displays the locations broken down by respondent type. 

 

 



 

 

 

 

 

  

 
Figure 3.5 Heatmap of Survey Respondent Commute Start Points 

 

As can be seen in Figure 3.5, the majority of respondents travel to campus from within San 

Luis Obispo, and a significant portion of respondents travel from Santa Maria, Arroyo 

Grande/Pismo Beach Area, and Atascadero/Paso Robles. Additionally, a smaller portion of 

individuals travel to/from campus and Cambria. 

 



 

 

 

 

 

  

 
Figure 3.6. Heatmap of Survey Respondent Commute Start Points by their Campus Roles 

 

As can be seen in Figure 3.6, the average one-way commute distance in miles for each mode was 

also determined, and Table 3.4 displays these distances as total values and broken down among 

faculty/staff and students. All values of zero in Table 3.4 indicate that no responses were 

recorded for the particular set of characteristics. The farthest commute distance for all 

respondents is by traveling via vanpool, for students is “other”, and for faculty/staff is 

vanpooling. Ignoring all values of zero, the shortest commute distance across the board is 

experienced by those whose mode is walking. This indicates that individuals who live farther 

from campus are selecting to travel as a larger group to get to campus, likely to save gasoline 



 

 

 

 

 

  

which directly reduces the carbon footprint. Given this, it was surprising that the carpool and 

vanpool mileages were not closer in value; perhaps this is attributed to vanpool being a 

company-based service, while carpool is a less official gathering of individuals. 

 

Table 3.4. Average one-way commute distance (miles) by mode and role, 2022 (off-campus trips 

only) 

 
 

Table 3.5 compares the one-way commute distance values in Table 3.4 for 2022 with the 

distance values obtained in the 2018 survey. The average total trip length for all modes increased 

between 2018 to 2022 by 56%. 

 

Table 3.5. Average one-way commute distance (miles) by mode and role, 2018 vs. 2022 

*off-campus trips only 

 
 

Table 3.6 displays a numerical process of the calculation of total VMT which was described 

in the previous section. The total weighted weekly VMT was calculated to be 1.12 million miles, 

and the total weighted yearly VMT was 46.8 million miles. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

  

Table 3.6. Weekly & Annual VMT calculation process off-campus population only. 

 
 

From this overall VMT value, the weekly weighted VMT per mode class can be calculated. 

These values are displayed in Table 3.7. The mode class of car comprises the largest portion at 89 

percent, with all other modes comprising less than 10 ten percent of total VMT respectively. 

 

Table 3.7. VMT Per Mode Class (off-campus population only) 

 
  



 

 

 

 

 

  

Chapter III: Estimation of Greenhouse Gas Emissions 
 

The greenhouse gas (GHG) emission quantities were determined after calculating the 

VMT, as they are dependent on the distances traveled by transportation modes. According to the 

United States Environmental Protection Agency, in 2020, the transportation sector contributed the 

largest percentage (27%) of GHGs than any other sector in the US (Fast Facts, 2022). At Cal Poly, 

just over half (52%) of GHG emissions are produced from transportation, and 97% of these 

transportation emissions result from commuter traffic (Greve et al., 2017). This illustrates the need 

for a campus-wide survey amongst commuters and campus community members, in order to 

determine the greatest sources of emissions amongst commuter traffic and how to reduce these 

emission sources. 

 

In this chapter, the methodology used to calculate GHG will be described. Additionally, 

the results from these analyses will be presented and discussed. For the GHG calculation, VMT 

values, as well as factors based on emission type and transportation mode determined via an online 

generator were utilized. 

 

Methods and Data 
 

The GHG calculation is dependent on the total weighted yearly VMT as calculated in the 

previous section. In the previous section, transport types (i.e. walking, biking, driving alone, etc) 

were referred to as “mode”; however, for the calculation of GHG emissions, it was more efficient 

to categorize these modes into five overarching “mode classes”. Table 4.1 displays these mode 

classes, as well as which modes fall within each mode class category.  

 

Table 4.1. Mode classes and the modes contained within. 

Mode(s)  Mode Class 

Bus Bus 

Carpooling, Driving alone (partial*), Dropped 

off, Ride-hailing app, Vanpool 

Car 

Driving alone (partial*) EV 

Motorcycling/Motorized scooter Motorcycle 

Bicycling, Walking Non-Motorized Mode 

 

*”Driving alone” responses were individually assigned to the “Car” and “EV” mode class, 

based on these respondents’ answer to the survey question of whether they commuted to campus 

with an EV.  

 

For the calculation, it was first necessary to convert this total VMT value into the VMT per 

mode class by using a ratio. This ratio was determined by dividing the weekly VMT for a particular 



 

 

 

 

 

  

mode class by the overall weekly VMT value. The weighted yearly VMT was then multiplied by 

the ratio for each respective mode class, leading to the individual VMT per mode class.  

 

Before deriving the greenhouse gas quantities, it was also necessary to determine the 

corresponding EMFAC (emission factor) values. The “Emissions” tab on the EMFAC website 

(arb.ca.gov/emfac/) was used. It is important to note that two separate factor generations were 

performed, one that encompassed the modes of Cars, Motorcycles, and Buses (referred to as 

“LDA”, “MCY”, and “U-BUS”), and one that encompassed EVs. It was necessary to conduct these 

reports separately due to the nature of the EMFAC value generator and how it interpreted the fuel-

type input.  

 

Table 4.2 displays the EMFAC values that were derived from this generator and were used 

in the subsequent calculation steps. The particulate matter (PM)2.5 and PM10 factors for all mode 

classes were each determined by summing together the running exhaust emissions (RUNEX) and 

Brake Wear Particulate Matter Emissions (PMBW) values respectively. These values are 

combined because they are two different sources of emissions and particulate matter specifically 

is generated from both the running engine as well as the vehicle tires. For the EV mode class, only 

the PM2.5 and PM10 values were considered, and all other emissions were assumed to be zero. 

This is because the EV produces PM via its tire treads and exhaust, but it does burn gasoline and 

therefore would not emit the remaining emission types. Naturally, all non-motorized EMFAC 

values were assumed to be zero as they do not run on gasoline and assumedly do not produce 

significant PM. All other factors were transcribed directly from the RUNEX columns.  

 

Table 4.2. EMFAC factors utilized in the GHG emissions calculations, all in units of 

grams/mile. 

Mode 

Class 

NOx 

Factor 

PM2.5 

Factor 

PM10 

Factor 

CO2 

Factor 

CO 

Factor 

SOx 

Factor 

CH4 

Factor 

N2O 

Factor 

Bus 0.08759

8 

0.03258

1 

0.09705

7 

1187.81 0.49489

4 

0.01174

3 

0.00253

1 

0.00869

5 

Car 0.06190

9 

0.00339

2 

0.00744

2 

292.777

3 

0.84127

2 

0.00289

4 

0.00324

4 

0.00592

9 

EV 0 0.00152

9 

0.00436

9 

0 0 0 0 0 

Motorcy

cle 

0.77312

2 

0.00610

6 

0.01402

4 

198.995

6 

18.2629

4 

0.00196

7 

0.22096

4 

0.0483 

Non-

Motoriz

ed 

Mode 

0 0 0 0 0 0 0 0 

 



 

 

 

 

 

  

The factors from Table 4.2 were multiplied by the mode-specific weighted yearly VMT 

value in order to determine the quantity of emissions in grams. The CO2 equivalent (CO2e) values 

for each mode class were determined by using the following Equation 4.1. In this equation, the 

𝑉𝑀𝑇𝑚𝑜𝑑𝑒 refers to the weighted yearly VMT value previously derived, the EMFAC factors are 

from Table 4.2, and the Global Warming Potentials (GWPs) are from standards decided by the UN 

Framework Convention on Climate Change in 2007 (Global Warming Potential, 2022).  

- 

The total CO2e value was then determined by summing together the CO2e values from each 

mode class. To determine CO2e per mile, this total CO2e value was divided by the total weighted 

yearly VMT. Finally, the metric ton CO2e (MTCO2e) value was derived by dividing the CO2e value 

by one million. 

 

Results and Discussion 
 

Using the emission factors from EMFAC listed in Table 4.2 in the previous section, 

Table 4.3 displays the resulting emission types in kilograms per mode class. The largest total 

emission is from CO2e and CO2, while the smallest emission values are from PM2.5 and PM10. 

 

Table 4.3. Emissions (in kilograms) Per Mode Class (off-campus population only) 

 
 

As described in the previous section, it was necessary to calculate mode class ratios to 

determine the weekly VMT to be allocated to each mode class. Table 4.4 below displays these 

mode class ratios. The  “2018 vs 2022 Comparison” section shows the mode use percentages 

among students and faculty/staff members; connecting that table with Table 4.4, it can be seen 

that the highest mode class ratio is associated with the largest percentage of use amongst campus 

members.  

  



 

 

 

 

 

  

Table 4.4. Mode class ratios 

Mode Class Mode Class Ratio 

Bus 0.008718621 

Car 0.890201969 

Electric Vehicle 0.09196068 

Motorcycle 0.00911873 

Non-Motorized Mode 0 

 

 

The total GHG emissions calculated were highest for the “Car” mode class at 12275.4 

MTCO2e, and lowest for the “Motorcycle” mode class at 93.4 MTCO2e (not including EVs, as they 

resulted in MTCO2e). Table 4.5 below displays the total million vehicle miles traveled (MVMT), 

emissions rates, and total emissions for each mode class. This does not include the mode class of 

“Non-Motorized Mode”, as this class evidently does not produce emissions of any kind. 

 

Table 4.5. Annual greenhouse gas emissions (MTCO2e) by mode class, 2022 (off-campus trips 

only) 

 
 

The overall total estimated MTCO2e value is 12854.2, as displayed in Table 4.5. This is a 

two percent reduction from the 2018 MTCO2e value. The total emissions rate reduced by four 

percent between 2018 and 2022, while the average trip length increased by 56%. This indicates 

that more individuals are traveling farther from campus but are likely finding methods to do so 

that are more beneficial to the environment (such as carpooling and commuting via EVs). Table 

4.6 shows a comparison of the aforementioned values, as well as number of students and staff, 

between the years of 2015 & 2018 and the years of 2018 & 2022. The previous Table 4.5 only 

considered off-campus trips, while Table 4.6 includes responses from the on-campus population – 

this is why values such as the total emission rate (CO2e/mile) may differ from the previous tables.  

 

 

 

 

 



 

 

 

 

 

  

Table 4.6. Changes in factors influencing campus-generated GHG emissions, 2015-2022 

(including on-campus population) 

 
 

  



 

 

 

 

 

  

Chapter IV: Traffic Count Data 
 

Background 
 

 

Figure 5.1. Map of California Polytechnic State University, San Luis Obispo. 

Above is a general map of the campus of California Polytechnic State University, SLO. 

The entrances, exits, streets, and main buildings are highlighted in this drawing. Though there 

are many entrances to the campuses, the main two, which were included in this research data 

collection, are through California and Grand. The main transportation modes on campus are 

buses, bicycles, heavy and light duty vehicles (i.e., cars), and motorcycles. Hence, this research 

paper focuses mainly on the data and numbers associated with these modes of transportation 

depending on both time and site.  

Below is a description of each site from the location coordinates with attached images 

showing the streets where the data was taken. For the following five locations, A->B (direction 

1) is towards campus and B->A (direction 2) is away from campus. 

 

 



 

 

 

 

 

  

Locations  
 

Site 1: (Grand Ave.) 

Location coordinates: 

 

 

Where: Direction 1 is towards N. Perimeter (towards campus) and Direction 2 is towards Deer Rd. 

(away from campus) 

 

Site 2: (Longview Lane) 

Location coordinates: 

 



 

 

 

 

 

  

 

Where: Direction 1 is towards Hathway Ave (towards campus) and Direction 2 is towards S. 

Perimeter (away from campus) 

  

Site 3: (California Blvd.) 

Location Coordinates: 

 

 



 

 

 

 

 

  

Where: Direction 1 is towards N. Perimeter (towards campus) and Direction 2 is towards Foothill 

(away from campus) 

 

Site 4: (Highland Dr) 

Location Coordinates: 

 

 

Where: Direction 1 is towards Mt. Bishop Rd (towards campus) and Direction 2 is towards W. 

Creek Rd (away from campus) 

  

Site 5: (Campus Way) 

Location Coordinates: 

 



 

 

 

 

 

  

 

Where: Direction 1 is towards College Ave. (towards campus) and Direction 2 is towards W. 

Creek Rd (away from campus) 

Data Processing and Filtering Methodology 

Next, we begin describing the overall data processing that took place to ultimately create 

the informative tables and graphs located in this report from a software called Trax pro. Note: this 

was done and repeated for all five sites and bicycles were the only model type counted for Site 2. 

The software used to actually open the original files (due to the original files being in .DMP 

format) was called Trax pro, a transportation data processing software. One must open the 

software, select open file, and click on the desired .dmp file located on the PC. From there, the 

PROCESS button must be selected, and a file name is chosen. The correct times/dates are selected, 

which have to be verified by comparing the data to the day on which it was taken (i.e., a weekday 

would have higher counts than a weekend). Then, ‘Modified Scheme F with Bikes’ needs to be 

chosen for the most accurate and detailed data. Save and process is chosen, and a new tab is brought 

up in the software. Here, the user must select ‘Class’ next to ‘Across the Top’ and change 60 

minutes to 15 minutes for the ’Interval Length & Options.’ The next step was to verify the 

directions and which direction (Direction 1 or 2) was towards or away campus, and which specific 

street these directions were towards. This was done through Google Maps by searching the exact 

location coordinates given also in Trax pro. Once the directions could be identified (ex. Site 1: 

Direction 1 towards N. Perimeter (toward campus) and Direction 2 towards Deer Rd. (away 

campus), one must manually change the direction name under the ‘Directions’ tab. Finally, the 

green checkmark ‘Process’ is clicked and all the raw data counts, based on direction and time of 

day, is presented in a table. From here, these were exported to an Excel spreadsheet and further 

analysis and data organization could take place. 

The spreadsheets in Excel were first done for each specific site. The tabs were arranged 

from left to right in order of directional raw data (direction 1 then direction 2), and then data only 



 

 

 

 

 

  

based on the day of the week and the PCE counts. These were then combined under one excel file 

spreadsheet corresponding to two main themes: weekday PCE data and model vehicle types. 

One of the first steps taken was to verify the dates for which the data was taken for each 

site. This was crucial because all of the data would then be processed based on date and day from 

then on. To do this, the original videos of the transportation data being taken aided the process but 

only for a couple of sites, in which the date can be seen. This could only do so much so next a new 

method had to be used. This was comparing the date listed in the Trax pro software with what the 

number counts actually turned out to be to see if a set day matched with the expected corresponding 

number of vehicle counts. For instance, as was mentioned earlier, a weekday would have higher 

counts than a weekend. If the counts made sense, the dates for the data were taken from the 

software and adjusted for 2022. This was the case, thankfully, for all the sites. 

The initial calculations of PCE were one of the first steps taken when making meaning out 

of the raw data. This would be needed for the pivot charts created for each site and direction and 

the weekday plots and bar graphs. PCE, Passenger Car Equivalent, is a useful way to interpret the 

counts and the trends for based on time of day for the flow of transportation-related activities 

across campus. To make the PCE calculation, a new column in excel was created solely for this, 

and the calculation was as follows: all of the numbers across the row for its set time and model 

types were added but with different scales and ratios. Cars and two-axle trucks were counted as 

1.0, motorcycles were 0.5, and buses and bigger trucks were 3.0. (Note: these model types will be 

described more specifically later on in the report) 

The next calculation that needed to be done to organize the data and create tables and 

graphs after PCE was the number of trips (#trips). A similar procedure was followed but this time 

with different scales based on established standardized numbers associated with each model type 

from an online resource. The scales were as such: 1.7 for Cars & Trailers and 2 Axle Long, 9.5 for 

Buses, and 1.0 for all remaining model types. Below is the link used as a resource for these scales: 

https://www.fhwa.dot.gov/tpm/guidance/avo_factors.pdf 

The next step in the data organization process was to create weekday specific data for each 

site. Each site was also categorized by two directions, in and out. This was done by copy pasting 

the pivot chart data using two main categories: PCE and the number of trips (see above for how 

PCE and #trips were calculated). The PCE data is distributed under the column labels ‘weekday’ 

from Sunday to Saturday and the row labels ‘time in decimal.’ The same was done with the number 

of trips. Finally, an adjusted PCE total was done to account for the 15-minute intervals and the 

number of lanes (where PCE value was divided by 4 to get into 15-minute intervals and multiplied 

by the number of lanes) and then averages were taken from these adjusted totals for just Tuesday-

Thursday and the Weekend for each direction. The plots could finally be made. First was a pivot 

line chart for the Flow Rate (PCE/hr./lane) for Sunday through Saturday. The second was a bar 

chart for Total Directional Volume (PCE/day) on the y-axis and combined averages for each 

direction, in and out, for Tuesday-Thursday and the weekend. 

The last arrangement of data was done depending on model vehicle type. To begin, the 

different model types listed on Trax pro were grouped under set categories to make the data easier 

to organize: bicycles, motorcycles, light-duty (which included Cars and Trailers), light-duty trucks 

https://www.fhwa.dot.gov/tpm/guidance/avo_factors.pdf


 

 

 

 

 

  

(which included 2 axle long and 2 axle 6 tire), buses, and MDHD trucks (which included the rest 

of the vehicle categories). The sums based on direction were totaled and the data was organized in 

the following way for each site: model type as the column header (with Site 2 including bicycles 

only—see earlier note above about Site 2) and the date/weekday as the row label. It is worth noting 

each model type had totals summed for both the in and out directions. 

Results 
We now proceed to further detail and present the tables and plots made from the above 

descriptions of data. 

Flow Rates per Day of the Week 

The next set of graphs created were the pivot charts for the weekday data for each direction 

and each site. The flow rate is in terms of PCE/hr./lane and is the measured variable dependent on 

the time in decimal-the independent variable. The different weekdays are color coded to help 

separate the trends between each day. 

Figure 5.2. Site 1, Direction 1 Flow Rates 

We can see from above that in general, the flow rate is at its highest from about 7 AM-12 

PM, which makes sense with the general flow of traffic seen on campus. 



 

 

 

 

 

  

Figure 5.3. Site 1, Direction 2 Flow Rates 

Above, we see there are major changes and peaks towards the end of the day around 3 PM-

6:30 PM. This is consistent with the direction as direction 2 is always away from campus and the 

route taken when leaving campus. 

Figure 5.4. Site 2, Direction 1 Flow Rates 



 

 

 

 

 

  

Apart from the different peak heights for the different weekdays, we see a consistent trend 

where the flow rate is nearly zero until 6 AM, where after that is an alternation between an increase 

then decrease (back and forth) for the rest of the day. 

Figure 5.5. Site 2, Direction 2 Flow Rates  

Here, the major peaks occur towards the end of the day—expected for direction 2 

Figure 5.6. Site 3, Direction 1 Flow Rates 



 

 

 

 

 

  

Figure 5.6 does not match expectations or predictions as we see the major maximums 

taking place later in the day relative to other direction 1 graphs towards the campus. This may be 

a site dependent finding or a source of error.  

Figure 5.7. Site 3, Direction 2 Flow Rates 

This graph further shows a disconnect from expectations as the major maximums are early in the 

day relative to other direction 2 graphs away from campus. This may be a site dependent finding 

or a source of error. 

Figure 5.8. Site 4, Direction 1 Flow Rates 



 

 

 

 

 

  

 

This set of data closely mirrors that of Site 1: Direction 1, with a sudden increase at around 6 

AM and then on average decreasing for the rest of the day with occasional relative maximum 

peaks. 

Figure 5.9. Site 4, Direction 2 Flow Rates 

Here expected directional data is depicted with major increases taking place at the end of the day 

way from campus. 



 

 

 

 

 

  

Figure 5.10. Site 5, Direction 1 Flow Rates  

Above is a consistent trend with what one would expect for a flow rate towards campus. 

Figure 5.11. Site 5, Direction 2 Flow Rates  



 

 

 

 

 

  

Most days above alternate between similar maximums and minimums from 9 AM to 6 

PM, then decrease on average from then on. 

Trip Counts 

Next, we proceed to present tabular data for the number of trips calculated in excel. The 

number of trips was the standard used to compare the newest 2022 data with that of 2019. It is 

only for Monday-Friday, is site-dependent, and separated based on direction. The average of 

both directions was taken to compare with the data from 2019 for the relevant sites with data 

available from 2019. 

Year  Grand California Highland Campus 

Way 

2019 6998 5487 5412 N/A 

2022 

(toward) 

6516 5295 5360 2358 

2022 

(away) 

5669 5648 5530 2206 

2022 avg. 6093 5472 5445 2282 

Table 5.1. Monday Counts 

  Grand California Highland Campus 

Way 

2019 7367 5864 5667 N/A 

2022 

(toward) 

7096 5682 5481 2503 

2022 (away) 6078 5913 5812 2340 

2022 avg. 6587 5798 5647 2422 

Table 5.2. Tuesday Counts 



 

 

 

 

 

  

 Year Grand California Highland Campus 

Way 

2019 7965 5532 5946 N/A 

2022 

(toward) 

6927 4811 5590 2529 

2022 (away) 5966 5668 5851 2339 

2022 avg. 6447 5240 5721  2434 

Table 5.3. Wednesday Counts 

 Year Grand California Highland Campus 

Way 

2019 8582 5546 5998 N/A 

2022 

(toward) 

6769 5412 5753 2395 

2022 (away) 5706 5652 5899 2349 

2022 avg. 6238 5532 5826 2372 

Table 5.4. Thursday counts: 

 

 

 

 



 

 

 

 

 

  

 Year Grand California Highland Campus 

Way 

2019 8525 4889 4800 N/A 

2022 

(toward) 

5998 4415 3703 1360 

2022 (away) 5132 4878 3744 1271 

2022 avg. 5565 4647 3724 1316 

Table 5.5. Friday Counts: 

 

Note: the most important takeaway is while numbers are consistent and can be comparable 

with the 2019 data with an on average <10% difference, we see some major changes between the 

years in for all the data for Grand and one for Highland in the Friday counts. While Highland can 

be excused due to this abnormality occurring in just one weekday, one cannot ignore the large and 

consistent difference for Grand. One possible explanation for this margin of error is the effects of 

the pandemic on public transportation and the routes previously taken on Grand. 2019 was pre-

pandemic and 2022 was post-pandemic.  

Total Directional Volume 

The next set of plots were bar graphs for Monday-Thursday averages and then weekend 

averages marking total directional volume for PCE per day. The main takeaway is as follows: the 

bar heights corresponding to Monday-Thursday were always higher than that for the weekend for 

all sites, a finding one should not find surprising for a college campus. 

Figure 5.11. Site 1 Total Directional Volume 

 



 

 

 

 

 

  

Figure 5.12. Site 2 Total Directional Volume 

Figure 5.13. Site 3 Total Directional Volume 



 

 

 

 

 

  

 

Figure 5.14. Site 4 Total Directional Volume 

Figure 5.15. Site 5 Total Directional Volume 

 

Margin of Error 

The last set of graphs were created using a programming language called RStudio. Here, 

the data from excel was automatically inserted into the program and then boxplots with margins 

of error relating to each model type, site, and applicable counts. To begin, it is worth presenting 

the tabular data relating to each model type for both directions and for each site. 



 

 

 

 

 

  

Date Day Bicycle 

in/out 

  

Motorc

ycle 

in/out 

Light Duty 

In/out 

Light 

Duty 

Truck 

In/out 

Buses 

In/out 

MDHD 

In/out 

5/1 Sun 5/29 5/6 542/533 75/164 2/2 6/8 

5/2 Mon 304/437 26/47 2879/2181 192/226 36/31 60/114 

5/3 Tues 350/359 24/50 3039/2374 778/900 39/29 52/59 

5/4 Wed 296/629 32/54 3006/2092 645/858 47/40 66/84 

5/5 Thurs 258/462 17/33 2942/2051 711/916 42/31 50/90 

5/6 Fri 167/210 23/40 2667/1906 588/849 57/33 58/84 

5/7 Sat 7/14 1/2 285/186 51/69 2/2 6/8 

Table 5.6. Site 1 trips in/out per mode 

 

Date Day Bicycle 

4/27 Wed 278/300 

4/28 Thurs 509/449 

4/29 Fri 431/397 

4/30 Sat 369/308 



 

 

 

 

 

  

5/1 Sun 238/194 

5/2 Mon 535/543 

5/3 Tues 631/592 

5/4 Wed 571/534 

5/5 Thurs 503/508 

5/6 Fri 447/403 

5/7 Sat 255/255 

5/8 Sun 202/185 

5/9 Mon 520/471 

5/10 Tues 531/521 

5/11 Wed 483/519 

5/12 Thurs 523/491 

5/13 Fri 441/402 

5/14 Sat 343/272 

5/15 Sun 236/200 

5/16 Mon 499/451 

5/17 Tues 624/579 



 

 

 

 

 

  

5/18 Wed 570/568 

5/19 Thurs 563/547 

5/20 Fri 169/124 

Table 5.7. Site 2 trips in/out for bicycles 

Date Day Bicycle 

In/out 

Motorcycle 

In/out 

Light 

Duty 

In/out 

Light 

Duty 

Truck 

Buses 

In/out 

MDHD 

in/out 

4/27 Wed 159/66 14/5 1399/1008 294/146 36/12 49/9 

4/28 Thurs 278/287 32/25 2175/2435 645/471 15/26 67/36 

4/29 Fri 204/207 34/22 2261/2656 671/516 12/15 54/30 

4/30 Sat 92/75 13/10 1557/1989 429/332 28/25 19/7 

5/1 Sun 105/100 20/5 1614/2086 395/351 26/29 8/11 

5/2 Mon 223/284 29/23 2052/2449 561/503 29/26 18/32 

5/3 Tues 272/264 25/24 2245/2608 627/533 23/28 27/32 

5/4 Wed 272/284 32/23 2078/2498 621/528 22/18 27/23 

5/5 Thurs 274/274 35/23 2202/2588 611/531 27/26 23/28 

5/6 Fri 186/216 37/29 2148/2517 714/512 35/32 39/31 

5/7 Sat 84/104 25/12 1452/1879 565/464 17/15 8/10 



 

 

 

 

 

  

5/8 Sun 73/70 8/5 1294/1786 332/276 14/11 2/4 

5/9 Mon 232/284 33/26 2166/2557 559/431 27/28 43/46 

5/10 Tues 265/325 27/18 2285/2592 667/518 28/26 49/73 

5/11 Wed 255/314 27/24 2171/2581 556/482 26/15 67/72 

5/12 Thurs 299/299 28/26 2207/2536 543/444 21/25 54/62 

5/13 Fri 199/193 28/23 2172/2456 510/421 28/29 24/20 

5/14 Sat 76/86 12/19 1435/1764 269/248 17/13 6/4 

5/15 Sun 108/114 10/12 1562/1878 292/273 10/14 12/10 

5/16 Mon 253/290 29/26 2313/2649 544/464 33/25 30/39 

5/17 Tues 286/264 26/25 2476/2761 573/481 31/30 27/37 

5/18 Wed 293/289 32/32 2305/2581 540/509 27/28 25/19 

5/19 Thurs 246/296 26/30 2382/2556 583/491 31/24 19/36 

5/20 Fri 61/136 11/12 565/1149 197/232 14/17 12/11 

Table 5.8. Site 3 trips in/out per mode 

 

Date Day Bicycle 

In/out 

Light Duty 

In/out 

Light 

Duty 

Truck 

Buses 

In/out 

MDHD 

in/out 

4/29 Fri 44/176 1305/1798 204/311 19/7 20/12 



 

 

 

 

 

  

4/30 Sat 55/88 1933/1870 275/337 2/1 8/6 

5/1 Sun 50/79 1821/1855 265/277 16/0 14/8 

5/2 Mon 274/338 2339/2504 393/391 37/22 60/10 

5/3 Tues 267/288 2455/2633 406/417 26/22 32/14 

5/4 Wed 300/367 2468/2597 444/417 24/21 32/22 

5/5 Thurs 247/308 2482/2608 410/415 30/22 48/30 

5/6 Fri 173/217 2251/2357 425/449 35/25 52/20 

5/7 Sat 53/80 1684/1801 502/458 20/1 20/18 

5/8 Sun 44/61 1486/1492 209/208 16/0 12/6 

5/9 Mon 284/320 2252/2403 365/340 29/29 34/18 

5/10 Tues 237/301 2467/2625 404/452 25/21 50/46 

5/11 Wed 257/323 2505/2646 406/405 32/18 44/38 

5/12 Thurs 250/287 2735/2836 384/396 34/23 58/42 

5/13 Fri 180/210 2220/2246 292/298 34/24 42/20 

5/14 Sat 62/86 1583/1715 188/202 12/0 6/4 

5/15 Sun 64/85 1709/1723 188/217 16/0 2/2 

5/16 Mon 272/307 2497/2599 399/375 23/22 28/12 



 

 

 

 

 

  

5/17 Tues 258/326 2488/2641 363/391 26/16 16/22 

5/18 Wed 258/315 2497/2615 384/410 25/22 70/82 

5/19 Thurs 261/314 2524/2609 416/397 32/22 80/66 

5/20 Fri 115/35 783/347 155/85 12/13 34/38 

Table 5.9. Site 4 trips in/out per mode 

 

Date Day Bicycle 

In/out 

Light Duty 

In/out 

Light 

Duty 

Truck 

Buses 

In/out 

MDHD 

in/out 

4/29 Fri 21/79 240/344 47/63  3/4 18/0 

4/30 Sat 37/77 469/487 145/107 3/2 32/2 

5/1 Sun 28/39 469/481 60/78 0/0 12/0 

5/2 Mon 164/251 905/895 227/214 2/3 90/32 

5/3 Tues 166/233 1022/980 247/221 3/3 74/16 

5/4 Wed 165/249 1066/996 242/226 1/1 70/24 

5/5 Thurs 166/249 1009/970 221/213 4/6 62/24 

5/6 Fri 116/167 860/772 206/208 4/4 42/14 

5/7 Sat 33/49 389/406 123/146 1/1 6/0 

5/8 Sun 20/29 398/410 48/51 0/0 2/0 



 

 

 

 

 

  

5/9 Mon 146/248 989/951 198/180 2/4 38/6 

5/10 Tues 154/249 1060/1030 250/221 1/1 62/12 

5/11 Wed 174/233 1085/1047 231/212 3/5 66/10 

5/12 Thurs 161/240 1018/1025 219/230 3/3 72/26 

5/13 Fri 104/169 877/861 201/204 2/4 34/6 

5/14 Sat 29/43 508/490 87/97 0/0 16/2 

5/15 Sun 26/33 543/524 60/73 0/0 8/0 

5/16 Mon 164/237 1030/969 228/213 5/2 56/14 

5/17 Tues 168/246 1064/1003 227/221 2/3 44/12 

5/18 Wed 164/241 1023/980 260/224 4/4 40/16 

5/19 Thurs 154/235 1022/1007 221/217 2/5 42/14 

5/20 Fri 57/32 323/186 107/51 0/0 26/2 

Table 5.10. Site 5 trips in/out per mode 

From this, the boxplots were created for these model types but also for both PCE and the 

number of trips calculations mentioned earlier.  



 

 

 

 

 

  

Figure 5.16. Bicycles 

 

Figure 5.17. Buses 

 

 

 



 

 

 

 

 

  

 

 

Figure 5.18. Light Duty Vehicles 

Figure 5.19. Light Duty Trucks 

 



 

 

 

 

 

  

 

Figure 5.20. MDHD 

 

Figure 5.21. PCE 



 

 

 

 

 

  

 

Figure 5.22. Number of Trips 
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Appendix A: Literature Review 
 

INTRODUCTION 

 

Automobility was once one of humankind’s greatest promises, providing mobility opportunities 

at an accessible cost for many people, particularly in industrialized nations. In these nations, the 

vehicle has come to prominence and is enmeshed in a system of automobility-oriented 

infrastructures and lifestyles (Burghard and Dutschke 2018, Sanguesa et al. 2021). 

 

Unfortunately, the traditional automobile, which runs on fossil fuels, is a major factor in many of 

the pressing problems of the present day, including global warming, poor air quality, and 

resource scarcity (Bergman et al. 2017). Unnecessary greenhouse gas (GHG) emissions from the 

combustion of fossil fuels now have exceeded a dangerous level that requires prompt attention of 

control by enacting eco-friendly climate policies. The global population is anticipated to reach 

9.8 billion in 2050; accordingly, there will be around 2 billion automobile son the road (Ghosh 

2020). Even though these developments have helped a great number of people, they have also 

caused issues, such as increasing traffic congestion and ecological degradation in metropolitan 

areas. They have directly contributed to the dispersed growth patterns in rural and suburban 

areas, making public transportation service more challenging(Ferenchak and Katirai 2017, Lloyd 

et al. 2017). According to Pojani and Stead (2017), urban sprawl, rapid motorization, insufficient 

public transportation networks, disordered traffic patterns with a high use of automobiles, and 

inadequate infrastructure for cyclists and pedestrians are prevalent in many cities around the 

world. Consequently, the problems are exacerbated by the fact that more people prefer to acquire 

and utilize private vehicles (Enoch 2012). This cycle highlights why the transport sector is 

amongst the most difficult areas for public policy in the present, particularly about the negative 

transport externalities, and the environmental, social, and economic consequences of these 

issues. To effect a systemic change, policymakers, academics, and businesses are all actively 

researching alternative modes of transportation (Machado et al.2018). 

 

Shared mobility and vehicle electrification are two major developments in the evolution of 

transport systems because they have the ability to enhance several facets: traffic congestion by 

reducing the number of single-occupant automobile trips, GHG emissions, accessibility, and 

mobility flexibility (Rycerski et al., 2016; Lio and Correia 2022; Etminani-Ghasrodashti et 

al.2022a, Patel et al. 2022). Instead of needing vehicle ownership, shared mobility is the 

temporary use of shared automobiles based on the user's needs and preferences (Shaheen et al. 

2016). This phenomenon results from demographic and cultural developments, shifting social 

views toward the ownership of things (particularly in industrialized nations), and improvements 

in digital technology. Globally, the principle of sharing is fast developing and becoming more 

prevalent. It permits a reduction in the number of personal vehicles per household and develops a 

new mindset in which customers forego owning a vehicle in favor of shared mobility 

alternatives(Vine et al. 2014). 

 

Electric vehicles (EVs) that release no GHGs are a promising strategy for addressing global 

warming and other environmental pollution issues. Between 1832 and 1839, Robert Anderson 

invented the first electric vehicle with non-rechargeable primary batteries (Guarnieri 2011, 

Thielet al. 2020). Eventually, several models were created but failed because they needed a 



 

 

 

 

 

  

suitable rechargeable battery and an efficient electric motor. EVs were popular up to 1918, but 

the presence of gasoline caused their popularity to decline. Due to their inadequate speed and 

costly internal combustion engine (ICE), the number of EVs had dropped to zero by 1933 

(Ghosh2020). ICE vehicles release carbon dioxide (CO2), carbon monoxide (CO), hydrocarbon, 

and nitrogen oxides (N2O), resulting in global warming via GHGs effects and pollution that is 

detrimental to the environment and individuals. As a pollution-prevention technique, zero-

emission vehicles (ZEV) are necessary. ZEV incorporates fuel cells and electric vehicles 

(Ghosh2020, Sanguesa 2021).The need to understand how to incorporate shared mobility and car 

electrification into urban transportation networks and make them more socially, environmentally, 

and economically efficient has increased over the past few decades. In the future years, EVs and 

shared mobility will play a crucial role in smart cities. Consequently, the purpose of this research 

is to perform a literature analysis to evaluate each trend in detail and assess the possibilities of 

combining them. This study's findings can be utilized in the long-term planning of shared electric 

programs. 

 

METHODLOGY 

 

An extensive literature review was conducted for this research. First, we identified the keywords 

for running the query for the literature review. Next, a search query was submitted using the 

identified keywords in research databases such as Google Scholar, Scopus, Web of Science, and 

Science Direct. Recently published research papers and government reports were obtained to 

collectively compile the existing research on electric vehicles and shared mobility. The literature 

review was conducted using the snowball approach. The most relevant research articles that 

examine electric vehicles and shared mobility were studied extensively toconduct this research. 

These research articles uncovered more research articles through citations. 

 

SHARED MOBILITY 

 

Different Forms of Shared Mobility 

 

Shared mobility is the shared use of a vehicle, bicycle, or other mode that provides on-demand 

access to transportation options (Shaheen et al. 2016, Machado 2018). In a broader sense it can 

be described as travel replacements that strive to optimize the utilization of mobility resources 

that a society can feasibly afford by decoupling their use from their ownership. The goal is to 

provide a variety of mobility options, hence enhancing multimodality and minimizing 

transportation costs. Due to technological improvements, economic shifts, and environmental 

and social concerns associated with vehicle ownership and urban living, shared mobility services 

have recently gained popularity (Shaheen et al. 2017, Vecchio 2018; Khan et al. 

2023).Carsharing, micromobility, ridesharing, ridesourcing, and microtransit are the most 

prevalent types of shared mobility (EPA 2022). 

 

Carsharing 

 

Carsharing is the temporary use of a shared vehicle. Carsharing enables users to experience the 

advantages of personal vehicle use without the associated fees and obligations. Instead of 

possessing an own vehicle, the consumer will have an on-demand access to a fleet of shared 



 

 

 

 

 

  

automobiles. 95% of the time, private vehicles are estimated to remain idle; therefore, carsharing 

can boost the effectiveness of automotive use (Fraiberger & Sundararajan 2015). There are 

multiple carsharing forms, with the roundtrip model being the oldest. Recent years have seen the 

emergence of many carsharing forms, including one-way and peer-to-peer carsharing (Jorge et 

al. 2015, Lage et al. 2018). 

 

Micromobility 

 

Micromobility refers to modes of transportation smaller than cars, such as bicycles and e -

scooters. Like carsharing, bikesharing is a temporary rental service, often for less than an hour.  

 

Free-floating services allow the user to park the bicycle anywhere that is legal and safe. Docked 

bikesharing services require the user to pick up and return a bicycle to a designated station. 

Generally, shared scooters operate in the same way and are free-floating (Raux et al. 2017, Liand 

Kamargianni 2018, and Zhang et al. 2018; Etminani-Ghasrodashti et al. 2022b). 

 

Ridesharing 

 

Ridesharing enables riders and drivers with the same origin-destination combinations to share 

rides. Carpooling and vanpooling have been in existence for many years. The US Federal 

Highway Administration (FHWA) defines vanpooling as a group of 7 to 15 people travelling 

together in one van, whereas carpooling involves fewer than 7 people travelling together in one 

car. The modal proportion of ridesharing in the United States has decreased from 20.4% in 

1970to 9% in 2016. However, it remains the second most popular means of transportation in the 

United States after driving alone (Jia et al. 2017, Vecchio 2018; Khan et al. 2022). 

 

Ridesourcing 

 

Ridesourcing, sometimes known as ride hailing, is among the most prevalent forms of sharing 

transit. In this approach, customers book a ride online, generally a mobile application, which 

matches them with a driver. Charges and reviews are also processed online. These service 

providers are known as transportation network businesses. Ridesourcing may also involve 

ridesplitting, wherein individuals may share their trip with other passengers in the similar 

direction for a lower fare. Typically, drivers use their own automobiles; however, some 

businesses provide rental vehicles for drivers. Few taxi businesses also offer ride-hailing 

applications. Ridesourcing debuted in San Francisco, California, in the summer of 2012, and has 

since rapidly spread around the United States and the world, with both support and opposition 

(Alemi et al. 2017, Shaheen et al. 2017). 

 

Microtransit 

 

Microtransit is an on-demand transit service incorporating variable routing, flexible scheduling, 

or both. Trips are shared with other customers in SUVs, or vans and they might have either 

stationary routes and schedules or flexible, dynamic itineraries. Microtransit's smartphone 

technology eschews conventional and expensive means of reserving trips, such as call centers 

and booking websites. Utilizing advanced technology can reduce operating expenses for 



 

 

 

 

 

  

programs aimed at populations, such as the disabled, elderly, and low-income individuals. Such 

trips are typically restricted to a predetermined service region. Even with adaptable routes, you 

may be compelled to walk a short distance to a close pickup place and from the destination to 

your destination. Vanpools and these services are similar, although vanpool participants often 

share driving responsibilities, whereas microtransit vehicles employ drivers. These services are 

more similar to public transit and may pose more direct competition because of their more rigid 

nature (defined routes and times) (Vine et al. 2014, Jorge et al. 2015). 

 

Benefits of Shared Mobility 

 

A growing body of empirical research suggests that shared mobility offers significant 

transportation, land usage, environment, and social benefits. While substantial studies have been 

performed on the impacts of roundtrip carsharing, more is needed about the effects of ridesharing 

and the more recent service model of ridesourcing (Fraiberger & Sundararajan 2015). Each 

carsharing vehicle eliminates nine to thirteen vehicles from the road (delayed and sold). Most of 

this change in vehicle ownership is due to one-car households becoming car-free (Ballus et 

al.2014). The most recent research and member survey findings issued by carsharing companies 

in the United States and Canada indicate that 16 to 35% of carsharing members sold their 

vehicles and that 25 to 71% of members refrained from purchasing a vehicle due to carsharing. 

In addition, reductions in auto ownership are frequently connected with an increase in walking, 

carpooling, and cycling, as well as a decrease in parking demand and vehicle miles travelled. In 

addition to reducing VMT and automobile possession, carsharing also reduce GHGs. The 

observed impact was a 34 to 41% reduction in GHG emissions per home per year. Lastly, 

carsharing has additional positive societal effects, such as improved mobility made possible by 

one-way service models and vehicle accessibility for students and low-income communities. The 

precise amount of ridesharing's transportation, infrastructure, and environmental implications 

have yet to be discovered. Ridesharing participants individually enjoy pooled travel expenses, 

trip time savings from high occupancy car lanes, reduced commuting anxiety, and frequently 

preferred parking and other perks (Jia et al. 2017, Vecchio 2018). 

 

ELECTRIC VEHICLES 

 

Different Types of EVs 

 

ICE-powered traditional vehicles are unsustainable and emit a significant amount of greenhouse 

gases. Alternate Energy Vehicles include EVs, bio-fuel vehicles, fuel cell vehicles, compressed 

natural gas vehicles, and more. Electric vehicles are propelled entirely or partially by electricity. 

EVs provide various advantages over conventional vehicles, such as zero emissions, 

convenience, reliability, affordability, convenience efficiency, and connectivity 

(Albatayneh2020). However, electric vehicles face significant battery-related challenges, 

including driving range, recharging time, and battery pricing (Berjoza and Jurgena 2019). EVs 

are classified intothree types based on the technology of their engines. 

 

Hybrid EV and Plug-In Hybrid EV 

 



 

 

 

 

 

  

The hybrid electric vehicle (HEV) is propelled by an electric motor and a conventional ICE, with 

the electric motor only contributing to the vehicle's starting and propulsion. The slowing or 

braking of a HEV charges its battery. Due to their lack of grid energy use, HEVs are alleged to 

be half as polluting and double efficient as traditional gasoline-powered vehicles (Ghosh 

2020,Sanguesa et al. 2021). In a plug-in hybrid electric vehicle (PHEV), fuel cell storage may be 

charged via the electrical utility grid (Shamshirband et al. 2018). They typically have a highly 

efficient internal combustion engine and a battery pack with a massive capacity. The PHEV has 

charge-depleting and charge-sustaining operating modes (Yong et al. 2015, Sanguesa et al.2021) 

 

Battery Electric Vehicles 

 

Battery electric vehicles (BEVs) replace the ICE and gas storage with an electric battery powered 

engine. BEVs frequently employ enormous battery packs to achieve acceptable autonomy. When 

the BEV is not in use, it is connected to a charging station. The BEV removes conventional 

engines, gas tanks, and tailpipes, as well as the potential to generate electricity onboard (Wang et 

al. 2020, Zhou et al. 2020). Some BEVs have a range of up to 300 miles per charge. A BEV's 

typical range is between 100 and 150 miles (Kwon et al. 2020, Li et al. 2020).The BEV may 

charge overnight utilizing low-cost electricity provided by any power plant, renewable or not. In 

addition, the BEV has enough propulsion. Unfortunately, slow charging time, and costly energy 

storage prevent the broad use of these model (Fernandez 2018; Andwari 2017).  

 

Environmental Impact of Electric Vehicles 

 

Although numerous environmental concerns, such as effects on air quality, water usage, urban 

sprawl, and diversity, are worthy of consideration, we limit our environmental impact evaluation 

to particulate matter and GHG emissions in this article. Traditional diesel and gasoline-powered 

automobiles or ICE vehicles emit greenhouse gas pollutants, including CO2,CO, N2O, and 

particulates (Yong et al. 2015, Sanguesa et al. 2021). The primary benefit of the EV is that it 

emits no pollutants from its tailpipe. The potential for EVs to reduce greenhouse gas emissions 

can range from 10% to 60%, depending on the type of EV and geographic area. Consequently, it 

is believed that an electric vehicle with a grid-powered battery can contribute to environmental 

preservation . 

 

Conventional petroleum and diesel fuel automobiles or ICE vehicles emit both greenhouse gases 

and particulate matter (PM). PM10 denotes particles with an aerodynamic diameter of less than 

10 micro meter, whereas PM2.5 denotes particles with an aerodynamic diameter of less than 2.5 

micro meter. Analysis of PM emissions from road traffic reveals that 70% of particles are PM1 

type. PM2.5 andPM10 are associated with lung disease, chronic and acute pneumonia, breathing 

problems, respiratory issues, and lung cancer risk. The World Health Organization suggests that 

the PM2.5concentration should be 10 g/m3. Because there are no tailpipe emissions, the BEV 

does not emit PM from exhaust sources (Albatayneh 2020). 

 

Potential Electric Vehicle and Car Sharing Synergy 

 

Electric vehicles could enhance shared mobility services such as car sharing. In recent years, an 

increasing number of carsharing companies have incorporated electric vehicles (EVs) into their 



 

 

 

 

 

  

fleets or developed completely electric carsharing programs. Electric carsharing (ECS)provides 

certain benefits over the private purchase since carsharing automobiles get a greater yearly 

mileage than private ones (Meyer and Shaheen 2017, Burghard and Dutschke 2018), the 

accounting rate of return of EVs is shorter, and the service life evaluation is more favorable(Plotz 

et al. 2014). In station-based systems, it is easier to offer charging stations than it is for 

individual customers. However, the maintenance of an ECS is more expensive due to limited 

vehicle utilization and installation costs for charging stations. From the user's perspective, the 

existing shortcomings of EVs manifest in carsharing fleets and diminish the assumed 

autonomy(Hinkeldein et al. 2015). However, the normal carsharing journey is very short, so the 

low range should not often present any issues (Wappelhorst et al. 2014).Considering that the 

collaboration between electric vehicles and shared mobility is still in its infancy, there is a dearth 

of literature in this field. According to Burghard and Dutschke (2018),ECS have the possibility 

to alleviate the ecological impacts of personal vehicle travel. Based on the actual data of 

carsharing's known effects on lowering parking requirements, ownership, VMT, and greenhouse 

gas emissions, ECS can enhance these effects. The other possibly significant synergies exist 

between EVs and shared vehicles (Ampudia al. 2020). Furthermore, ECS is more appealing to 

consumers than privately owned EVs, as ECS will travel several times further annually than 

private EVs. In addition, the capacity to deploy these cars based on the passenger occupancy 

requirements of each journey might significantly reduce energy usage and, consequently, 

greenhouse gas emissions (Kwon et al. 2020). In conjunction with the greater inherent efficiency 

of BEVs and the lower GHG intensity of electricity compared to gasoline, the life cycle GHG 

emissions per mile of an ECS vehicle might decrease by almost 90 percent compared to the 

average passenger vehicle of today. Together, these characteristics would likely make ECS more 

affordable than owning a normal car, with nearly all of the conventional vehicle’s benefits, plus 

the convenience of AVs and substantial GHG savings (Yong et al 2015). 

 

CONCLUSION 

 

This study reviewed the most relevant published research articles and government reports over 

the last few years to compile the research on shared mobility and electric vehicles. Shared 

Mobility and electric vehicles are two major developments in transportation evolution. Shared 

mobility services such as carsharing, ridesharing, ridesourcing, and microtransit have recently 

gained popularity due to mobile internet advancements. The environmental and social concerns 

associated with vehicle ownership have also boosted the use of shared mobility services in recent 

years. The traditional ICE vehicles account for a large number of greenhouse gas emissions. 

However, electric vehicles are stated to have multiple advantages over ICE vehicles in the form 

of low carbon emissions, convenience, connectivity, efficiency, affordability, and reliability. 

Recently, car-sharing companies have started integrating EVs into their services. However, there 

is very little literature in this field as the integration of electric vehicles with shared mobility is 

still an emerging market. Electric carsharing can provide major benefits over privately owned 

vehicles in terms of shorter accounting rates of return and greater service life than ICE vehicles. 

Electric car sharing has the potential to reduce parking requirements, VMT, and GHG emissions. 

The synergy between electric vehicles and shared mobility can be more economical and 

environmentally friendly than privately owned vehicles. 
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